请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-hCCR8 mice
Strain Name
C57BL/6-Ccr8tm1(CCR8)Bcgen/Bcgen
Common Name  B-hCCR8 mice
Background C57BL/6 Catalog number  110096
Related Genes 

C-C motif chemokine receptor 8; CY6; TER1; CCR-8; 

CKRL1; CDw198; CMKBR8; GPRCY6; CMKBRL2; CC-CKR-8

NCBI Gene ID
12776

mRNA expression analysis


from clipboard


Strain specific analysis of CCR8 gene expression in C57BL/6 and B-hCCR8 mice by RT-PCR. Mouse Ccr8 mRNA was detectable in thymocytes of wild-type mice (+/+) . Human CCR8 mRNA was detectable only in homozygous B-hCCR8 mice (H/H) but not in wild-type mice (+/+). 


Protein expression analysis


from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. MC38 cells were inoculated into wild-type C57BL/6 (+/+) and homozygous B-hCCR8 mice (H/H). Tumors were harvested at the endpoint of experiment, and the TILs were analyzed by flow cytometry. Human CCR8 was both detectable on CD4+ T cells and Treg cells in tumors of homozygous B-hCCR8 mice, and mouse CCR8 was detectable only in wild-type mice.

Leukocytes cell subpopulation and CCR8 expression analysis in spleen, thymus, 

and blood of B-hCCR8 mice (non-tumor bearing)


Protein expression analysis of mouse and human CCR8 in spleen

from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. Spleen was isolated from the mice, and analyzed by flow cytometry. Human and mouse CCR8 were not expressed neither in splenocytes of wild-type mice nor B-hCCR8 mice separately.

Protein expression analysis of mouse and human CCR8 in thymus

from clipboard

Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. Thymus was isolated from the mice, and analyzed by flow cytometry. Human and mouse CCR8 were not expressed neither in thymocytes of wild-type mice nor B-hCCR8 mice separately.


Protein expression analysis of mouse and human CCR8 in blood

from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. Blood were harvested from the mice, and analyzed by flow cytometry. Human and mouse CCR8 were not expressed neither in blood cells of wild-type mice nor B-hCCR8 mice separately.

Analysis of leukocytes cell subpopulation in B-hCCR8 mice

from clipboard


Analysis of spleen leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hCCR8 mice (n=3, 8-week-old). Flow cytometry analysis of the splenocytes were performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cell, B cell, NK cell, monocyte, dendritic cell, granulocyte and macrophage in homozygous B-hCCR8 mice were similar to those in the C57BL/6 mice, demonstrating that CCR8 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. Values are expressed as mean ± SEM.

from clipboard


Analysis of thymocytes leukocyte subpopulations by FACS. Thymocytes were isolated from female C57BL/6 and B-hCCR8 mice (n=3, 8-week-old). Flow cytometry analysis of the thymocytes were performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cell, B cell, NK cell, monocyte, dendritic cell, granulocyte and macrophage in homozygous B-hCCR8 mice were similar to those in the C57BL/6 mice, demonstrating that CCR8 humanized does not change the overall development, differentiation or distribution of these cell types in thymus. Values are expressed as mean ± SEM.

from clipboard


Analysis of blood leukocyte subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hCCR8 mice (n=3, 8-week-old). Flow cytometry analysis of the blood cells were performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cell, B cell, NK cell, monocyte, dendritic cell, granulocyte and macrophage in homozygous B-hCCR8 mice were similar to those in the C57BL/6 mice, demonstrating that CCR8 humanized does not change the overall development, differentiation or distribution of these cell types in blood. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in B-hCCR8 mice

from clipboard

from clipboard


Analysis of T cell subpopulation in spleen, thymus and blood.The lymphocytes were isolated from spleen, thymus and blood in C57BL/6 and B-hCCR8 mice (n=3, 8-week-old). The proportion of T cells subpopulation was tested by flow cytometry. There were no differences between C57BL/6 and B-hCCR8 mice, demonstrating that humanized of CCR8 does not change the overall development, differentiation or distribution of these T cell subtypes. Values are expressed as mean ± SEM.

Establishment of mouse MC38 colon cancer model based on B-hCCR8 mice and analysis leukocyte subpopulations and CCR8 expression of tumor, spleen, and blood.

Gating strategy

from clipboard

Protein expression analysis of mouse and human CCR8 in tumor


from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. TILs were harvested at the endpoint of experiment, and analyzed by flow cytometry. Human CCR8 was both detectable on CD4+ T cells and Treg cells in tumors of homozygous B-hCCR8 mice, and mouse CCR8 was detectable in wild-type mice.

Protein expression analysis of mouse and human CCR8 in spleen

from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. Splenocytes were harvested at the endpoint of experiment, and analyzed by flow cytometry. Mouse CCR8 was slightly expressed in Treg cells in spleen of wild-type mice, but human CCR8 was not detectable in homozygous B-hCCR8 mice. Because the CCR8 expression was low in the spleen, so maybe the CCR8 expressed much lower in the spleen of homozygous B-hCCR8 mice that we can’t detect it, or the antibody dose we used in this experiment is not saturated.

Protein expression analysis of mouse and human CCR8 in blood

from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. Blood cells were harvested at the endpoint of experiment, and analyzed by flow cytometry. Human and mouse CCR8 were not expressed neither in blood cells of wild-type mice nor human CCR8 separately.

Summary for protein expression

from clipboard


Strain specific analysis of CCR8 gene expression in B-hCCR8 mice by FACS. Human CCR8 was both detectable on CD4+ T cells and Treg cells in tumors of homozygous B-hCCR8 mice, but not in splenocytes and blood cells. Mouse CCR8 was detectable in tumors and slightly expressed in splenocytes of wild-type mice, but not in blood cells.

Analysis of leukocytes cell subpopulation in B-hCCR8 mice bearing MC38 tumors

from clipboard


Analysis of leukocyte subpopulations of tumor, spleen and blood by FACS.
Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-hCCR8 mice (female, 8 week-old, n=3). Tumors, splenocytes and blood cells were harvested at the endpoint of the experiment (tumor volumes~1000mm3), and flow cytometry analysis was performed to assess leukocyte subpopulations. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. Values are expressed as mean ± SEM.

Complete blood count and blood chemistry

Blood routine test in B-hCCR8 mice

from clipboard


Complete blood count (CBC). Blood from female C57BL/6 and B-hCCR8 mice (n=8, 9 week-old) was collected and analyzed for CBC. The measurements of B-hCCR8 mice were similar to that in C57BL/6 mice, indicating that humanization does not change blood cell composition and morphology. Values are expressed as mean ± SEM.

Blood chemistry of B-hCCR8 mice

from clipboard





Blood chemistry tests of B-hCCR8 mice. Serum from the C57BL/6 and B-hCCR8 mice (n=8, 9 week-old) was collected and analyzed for levels of indicators. The measurements of B-hCCR8 mice were similar to that in C57BL/6 mice, indicating that humanization does not change the health of related tissues, such as liver. Values are expressed as mean ± SEM.

In vivo efficacious of anti-human CCR8 antibody



In vivo efficacy of anti-human CCR8 antibody


from clipboard


Antitumor activity of anti-human CCR8 antibody in B-hCCR8 mice bearing MC38 cells. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-hCCR8 mice (female, 7 week-old, n=6). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human CCR8 antibodies (in house). (A) Tumor growth curve. (B) Body weight changes during treatment. As shown, anti-human CCR8 antibodies were efficacious in controlling tumor growth in B-hCCR8 mice. B-hCCR8 mice provide a powerful preclinical model for in vivo evaluation of anti-human CCR8 antibodies. Values are expressed as mean ± SEM.


from clipboard

Antitumor activity of anti-human CCR8 antibody in B-hCCR8 mice. (A) Anti-human CCR8 antibody get from cooperation company inhibited MC38 tumor growth in B-hCCR8 mice. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-hCCR8 mice (female, 8 week-old, n=7). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human CCR8 antibody. (B) Body weight changes during treatment. As shown in panel A, anti-human CCR8 antibody were efficacious in controlling tumor growth in B-hCCR8 mice. B-hCCR8 mice provide a powerful preclinical model for in vivo evaluation of anti-human CCR8 antibody. Values are expressed as mean ± SEM.


Tumor infiltrates lymphocytes analysis



from clipboard

Analysis of tumor infiltrates lymphocytes by FACS.TILs were harvested at the endpoint of the experiment and flow cytometry analysis was performed to assess the leukocyte subpopulations. The percent of CCR8+ Treg cells were significant decrease in anti-human CCR8 antibody treatment group (G2, G4), and the ratio CD8+ T cells to Treg cells increased significantly in G2, but not in G4. (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001)